Self-assembled foam-like graphene networks formed through nucleate boiling
نویسندگان
چکیده
Self-assembled foam-like graphene (SFG) structures were formed using a simple nucleate boiling method, which is governed by the dynamics of bubble generation and departure in the graphene colloid solution. The conductivity and sheet resistance of the calcined (400°C) SFG film were 11.8 S·cm(-1) and 91.2 Ω□(-1), respectively, and were comparable to those of graphene obtained by chemical vapor deposition (CVD) (~10 S·cm(-1)). The SFG structures can be directly formed on any substrate, including transparent conductive oxide (TCO) glasses, metals, bare glasses, and flexible polymers. As a potential application, SFG formed on fluorine-doped tin oxide (FTO) exhibited a slightly better overall efficiency (3.6%) than a conventional gold electrode (3.4%) as a cathode of quantum dot sensitized solar cells (QDSSCs).
منابع مشابه
A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling
We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almos...
متن کاملAnalytical Considerations of the Flow Boiling Heat Transfer in Metal-foam Tubes
A newly simplified microstructure model of metal foams was carried out for flow boiling heat transfer in metal-foam filled tube. Fin analysis, heat transfer network and superposition correlation were adopted to obtain the equivalent heat transfer coefficient for flow boiling. Based on annular pattern, fluid can be divided into vapor region in the center of the tube and liquid region near the wa...
متن کاملHeat Transfer Enhancement and Applications of Femtosecond Laser Processed Metallic Surfaces
In the present work, functionalized 304 stainless steel metallic surfaces were created with the use of a Femtosecond Laser Surface Processing (FLSP) technique. The laser processing technique produces self-organized micro/nanostructures on the surface. The heat transfer performance of various FLSP functionalized surfaces were characterized through pool boiling and Leidenfrost experiments. Enhanc...
متن کاملExperimental Study for Investigating the Mechanism of Heat Transfer near the Critical Heat Flux in Nucleate Pool Boiling
Heat transfer coefficient in nucleate pool boiling near critical heat flux at least one orderhigher than the convectional heat transfer modes. In this paper, an experimental setup isdesigned and fabricated to investigate the mechanism of heat transfer from boiling surface tobulk liquid near critical heat flux. The images of pool boiling near the high heat flux regionreveals that the individual ...
متن کاملTernary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.
Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors, and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale, and multiphase building blocks have been investigated w...
متن کامل